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Abstract. There exists presently considerable debate over the question whether local Coulomb interactions
can explain the absence of the small e′g Fermi surface hole pockets in photoemission studies of Na0.3CoO2.
By comparing dynamical mean field results for different single particle Hamiltonians and exact diagonal-
ization as well as quantum Monte Carlo treatments, we show that, for realistic values of the Coulomb
energy U and Hund exchange J , the e′g pockets can be slightly enhanced or reduced compared to band
structure predictions, but they do not disappear.

PACS. 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor – 71.27.+a Strongly
correlated electron systems; heavy fermions – 74.70.-b Superconducting materials

1 Introduction

The Fermi surface of a material is one of its most funda-
mental properties. Usually, it can be understood, at least
qualitatively, within density functional theory. It came as
a surprise, therefore, when several angle-resolved photoe-
mission (ARPES) studies on the intercalated layer com-
pound Na0.3CoO2 [1–4] revealed a fundamentally different
shape of the Fermi surface than predicted by local density
approximation (LDA) band theory [5]. On the other hand,
the overall width of the Co 3d bands in the ARPES data
was found to be only moderately reduced compared to
the LDA value. Essentially, the partially filled Co 3d t2g

bands should give rise to a large ag hole pocket centered
around Γ , and six small hole pockets of e′g character along
the ΓK directions of the hexagonal Brillouin Zone. These
e′g pockets have not yet been observed in ARPES exper-
imental work. Bulk sensitive Shubnikov-de Haas data [6]
reveal two frequencies, but it is not clear whether they are
consistent with the LDA calculations. Recent Compton
scattering measurements, however, provide evidence that
the e′g pockets do indeed exist [7]. The role of the e′g pock-
ets for the superconducting hydrated phase of Na0.3CoO2

is also a subject of intense investigations [8]. In view of
the narrow width of the Co t2g bands (W ≈ 1.5 eV), one
possible source of the discrepancy between ARPES and
band theory might be the effect of intra-3d Co Coulomb
interactions which, in principle, could enhance orbital po-
larization by leading to a charge transfer from ag to e′g
subbands, and, eventually, to a shift of the e′g bands be-
low the Fermi level.

The influence of Coulomb interactions on the Fermi
surface of Na0.3CoO2 has been investigated by several

groups, using various theoretical methods and levels of
approximation [9,12–17]. Ishida et al. [9] applied dynam-
ical mean field theory (DMFT) [10] based on the multi-
orbital quantum Monte Carlo (QMC) method, together
with a single-particle Hamiltonian derived from an accu-
rate tight-binding fit of the t2g bands to the linearized
augmented plane wave (LAPW) band structure. The re-
sult of this work was that, for Coulomb energies U ≈
3.0 . . .3.5 eV and exchange J = U/4, the e′g hole pockets
were slightly enlarged compared to the LDA Fermi sur-
face, in contrast to the ARPES data. The width of the
occupied part of the t2g bands, however, was found to
be about 0.7 eV, in approximate agreement with ARPES
measurements [1–4]. To avoid sign problems, only Ising-
like exchange terms were included in the QMC calcula-
tion. It was also shown that an LDA+U [11] treatment
can lead to enlarged or reduced e′g hole pockets, depend-
ing on whether U is smaller or larger than 5J , respectively.

At the same time, Zhou et al. [12] investigated this
problem within the Gutzwiller approach in the large U ,
J = 0 limit. Using a slightly different tight-binding fit to
the LDA bands, these authors found that the e′g bands
were shifted below EF , and that the width of the t2g

bands was strongly reduced from 1.5 eV to about 0.5 eV.
Thus, while the Fermi surface appears to agree with
the ARPES data, the band narrowing is much stronger
than experimentally observed. Similar Gutzwiller calcula-
tions in the U → ∞, J = 0 limit were recently carried
out by Shorikov et al. [13], with results similar to those
of reference [12]. Since the Gutzwiller method replaces
the frequency dependent complex self-energy by parame-
ters providing orbital dependent energy shifts and band
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narrowing, it represents an approximation to DMFT.
Moreover, for U → ∞, complete orbital polarization is
to be expected. Thus, for a meaningful comparison with
ARPES data, it is important to extend the Gutzwiller
approach to realistic Coulomb and exchange energies ap-
propriate for Co.

The influence of correlations on the electronic prop-
erties of hydrated Na0.35CoO2 was also investigated by
Landron and Lepetit [14] within quantum chemical meth-
ods for embedded CoO6 and Co2O10 clusters. The crystal
field splitting between ag and e′g orbitals was found to be
∆ = 315 meV, and the Coulomb and exchange energies
U = 4.1 eV and J = 0.28 eV. At present, it is not clear
how these parameters, in particular, the large value of ∆,
would be modified for larger clusters that are required to
describe the electronic properties of the extended system.
Slave-boson mean field calculations by Bourgeois et al. [15]
based on ∆ = 315 meV and U → ∞ revealed a pure ag

Fermi surface and a t2g band width of 0.5 eV, similar to
the results of reference [12].

To examine the role of Hund exchange contributions
not included in the QMC/DMFT, Perroni et al. [16]
applied a new multi-band exact diagonalization DMFT
scheme to Na0.3CoO2. This approach does not suffer from
sign problems and includes spin-flip and pair-exchange
terms. Also, larger values of U and lower temperatures
can be handled than via QMC. The result of this study
was that there is little difference between Hund and Ising
exchange, and that, for U = 3 . . . 5 eV and J = U/4,
the e′g pockets were slightly enlarged, in agreement with
the QMC/DMFT results. Also, the band narrowing was
found to be consistent with the QMC treatment and with
the ARPES data.

Most recently, Marianetti et al. [17] studied the prob-
lem of the e′g hole pockets in Na0.3CoO2 by applying
a new continuous-time QMC/DMFT version that allows
to reach larger U and lower temperatures. The single-
particle Hamiltonian was the same as in reference [12],
except for the crystal field splitting ∆ = Eag − Ee′

g

that shifts the ag bands up and the e′g bands down. For
U = 3 . . . 5 eV and J = 0, reduced e′g pockets are found
for ∆ = −10 meV, and fully suppressed pockets if ∆ is
increased to 50 . . . 100 meV. Their results appear to be in
agreement with reference [12] and in disagreement with
reference [9]. Since the DMFT calculations, however, were
not done for the same input Hamiltonian and U , J values
as those in references [9,16], the origin of the conflicting
trends is presently unknown.

The purpose of this work is to resolve this issue and to
analyze the role of the single-particle Hamiltonian H(k)
and Coulomb and exchange energies for the charge trans-
fer between t2g bands. In particular, we show that the ED
and QMC many-body calculations are in perfect agree-
ment if identical input parameters are employed. On the
other hand, the two different versions of H(k) used in
references [9,16] and [12,17] (below we refer to them as
H1 and H2, respectively) give rise to a slight, but signif-
icant difference in the variation of e′g occupancy with U :
whereas H1 yields decreasing e′g occupancy with increas-
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Fig. 1. Tight-binding fits to LDA t2g band structure of
Na0.3CoO2. Solid (red) curves: H1(k) used in references [9,16],
dashed (blue) curves: H2(k) used in references [12,17]; EF = 0.

ing U , H2 gives the opposite trend. We show that these
differences are caused by the t2g crystal fields ∆ contained
H1 and H2. The key point, however, is that, for realistic
Coulomb and exchange energies, i.e., U ≈ 3 . . . 5 eV and
J ≈ 0.72 eV [18], the differences caused by H(k) are small
and do not affect the controversy concerning the shape of
the Fermi surface. Both versions of H(k) yield the result
that, without an additional ag/e′g crystal field splitting,
Coulomb interactions do not eliminate the e′g hole pock-
ets. The overall topology of the Fermi surface remains the
same as predicted by LDA band theory.

2 Theory

Figure 1 shows the tight-binding fits to the partially occu-
pied Co 3d t2g bands used in references [9,16] and [12,17].
The Hamiltonian H1(k) used in references [9,16] is spec-
ified in the Appendix [19]. The one employed in refer-
ence [17] is given in reference [12]. The total occupancy
is 5.3. The ag and e′g occupancies (per spin band) are
nag ≈ 0.80 and ne′

g
≈ 0.925. Although both Hamiltonians

give similar energy bands, they differ in a fundamental as-
pect: the predominant ag wave function character of the
lowest LAPW band along MK of reference [5] is correctly
reproduced via H1, resulting in a van Hove singularity
in the ag density of states near −1.12 eV, as shown in
Figure 2. In contrast, the two lowest bands derived from
H2 cross along MK, so that this singularity is shifted
to −0.84 eV, implying a significant narrowing of this sub-
band. The lowest H2 band at M has e′g character and gives
only a weak step at −1.02 eV in the density of states. Since
the influence of Coulomb interactions is highly sensitive
to the band width and the distribution of spectral weight
within a band, and to the effective crystal field splitting
between subbands, these differences should affect also the
correlation induced charge transfer between t2g bands.

The top of the H2 ag band at Γ is seen to exhibit a min-
imum which is absent for H1 and leads to a pronounced
peak in the density of states. This spectral weight is
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Fig. 2. Comparison of ag and e′g density of states. Solid (red)
curves: H1(k), dashed (blue) curves: H2(k), EF = 0.

distributed over a slightly wider energy range in the case
of H1. The minimum is present in the LDA LAPW band
structure to which both Hamiltonians were fitted. It is
caused by interplanar interactions in the double layer of
the unit cell. These interactions are absent in H1 as well
as H2. Moreover, the bulk ag density of states does not
exhibit a sharp peak in this region. Thus, the H1 ag den-
sity shown in Figure 2 should be more appropriate than
the one derived from H2.

Despite these differences, near EF both Hamiltonians
yield very similar bands. The e′g band extends less than
100 meV above EF , and both models exhibit the ag / e′g
crossing along ΓK just below EF . Note that this crossing
exists only along ΓK. Away from this line the upper e′g
band hybridizes with the ag band so that a rapidly increas-
ing gap is opened up as soon as the parallel momentum
deviates from ΓK.

We now discuss the correlation induced changes of the
t2g bands of Na0.3CoO2 obtained within DMFT. We had
previously shown that, for Hamiltonian H1, the QMC and
ED results of references [9,16] for Ising exchange are in ex-
cellent agreement and that both schemes yield reduced or-
bital polarization with increasing U . Moreover, this trend
was found to be insensitive to the choice of J , with virtu-
ally no difference between anisotropic Ising and isotropic
Hund exchange within ED.
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Fig. 3. Subband occupancies as a function of U for fixed J
derived within ED/DMFT for T = 20 meV. Solid (red) curves:
H1, J = 0.7 eV; dotted (magenta) curves: H1, J = 0.9 eV;
dashed (blue) curves: H2, J = 0.7 eV; long-dashed (green)
curves: H2, J = 0.9 eV. For comparison, some results for J = 0
are also shown (crosses).

We have applied the ED approach of reference [16] to
H2 to check its consistency with the QMC formalism used
in reference [17]. For U = 3 eV, J = 0, ∆ = −10 meV
the subband self-energies as a function of Matsubara fre-
quency were found to be in almost quantitative agreement.
In view of the inevitable slight numerical differences be-
tween these DMFT approaches, the excellent agreement
of the ED and QMC results is indeed remarkable. We also
point out that both DMFT schemes take proper account
of static and dynamical correlations.

The unexpected result of this calculation is that, with
H2 as input, both ED and QMC schemes yield enhanced
orbital polarization: for U = 3 eV, J = 0, the subband oc-
cupancies are nag = 0.735, ne′

g
= 0.957, compared to the

LDA values nag = 0.8, ne′
g

= 0.925. This charge transfer
is opposite to the reduced orbital polarization obtained for
H1: nag = 0.825, ne′

g
= 0.91.

Figure 3 shows that similar systematic differences be-
tween H1 and H2 are found at other values of U , J .
To eliminate other sources of possible differences, all re-
sults are derived using the ED/DMFT approach [16] at
T = 20 meV. Regardless of the choice of J , H1 leads to
a reduction of ne′

g
as a function of U , whereas H2 yields

increasing ne′
g
. As in the case of H1, Hund and Ising ex-

change give nearly identical results for H2. Thus, although
the single-particle band structure and density of states de-
rived from H1 and H2 look qualitatively similar, these two
Hamiltonians lead to a small, but significant difference in
the variation of the subband occupancies with Coulomb
energy.

To analyze the origin of this unusual behavior we sim-
plify the evaluation of the quasi-particle Green’s function
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G(iωn) =
∑

k

[iωn + µ − H(k) − Σ(iωn)]−1, (1)

where ωn = (2n + 1)π/β are Matsubara frequencies, with
β = 1/kBT and temperature T . G, H and Σ are (3 × 3)
matrices in the t2g basis. Because of the planar hexagonal
symmetry, the diagonal elements of G are identical, and
so are the off-diagonal elements. The same applies to Σ.
In the ag, e′g basis, these quantities become diagonal, with
elements Gag = G11 + 2G12 and Ge′

g
= G11 − G12, and

analogous expressions for Σag,e′
g
. In this basis, the Green’s

functions can be approximately written as

Gi(iωn) =
∫

dωρi(ω)[iωn + µ − ω − Σi(iωn)]−1, (2)

where ρi(ω) are the ag and e′g density of states components
shown in Figure 2. We have checked that equation (2)
yields DMFT solutions with the same trend as the ones
derived from equation (1). Thus, the different solutions
obtained for H1 and H2 are directly related to the different
shapes of the respective density of states distributions. As
is evident from Figure 2, the e′g densities are quite similar
for both Hamiltonians. Indeed, replacing one by the other
does not alter the trends for the charge transfer shown in
Figure 3. It is clear, therefore, that the different shapes
of the ag density of states are the source of the opposite
orbital polarization found for H1 and H2.

As pointed out above, the fact that the lowest H2

bands cross along MK leads to an upward shift of the
lowest ag van Hove singularity by about 0.3 eV. One can
simulate this redistribution of spectral weight by reduc-
ing the ag density of H1 in the range ω < −0.7 eV and
amplifying it in the region −0.7 eV< ω < 0, such that
the occupied weight remains 0.8. This deformation is suf-
ficient to reverse the trend of ni(U) and give rise to a weak
enhancement of orbital polarization.

Evidently, the upward shift of spectral weight caused
by the band crossing along MK implies a relative shift
of 3d energy levels. In the case of H1, the centroids of
the ag and e′g density of states are Eag = −0.622 eV and
Ee′

g
= −0.489 eV, where ∆ = Eag − Ee′

g
= −133 meV

is the t2g crystal field splitting. In the tight-binding fit,
∆ was varied along with the hopping parameters, in or-
der to achieve the optimum representation of the LAPW
bands throughout the Brillouin Zone [9]. Clearly, its value
reflects the electronic structure of the extended system.
The physical origin of the negative t2g crystal field, i.e.,
the relation Eag < Ee′

g
, can be attributed to the fact that

the Na+ Coulomb field acts more strongly on the ag or-
bital, which is oriented normal to the Co planes, than on
the more planar e′g orbitals. In the case of H2, the splitting
was chosen as ∆ = −10 meV, and only the hopping pa-
rameters were fitted [12]. The ag and e′g centroids therefore
nearly coincide: Eag = −0.489 eV and Ee′

g
= −0.479 eV.

Note that, in both cases, Eag < Ee′
g

despite nag < ne′
g
.

As a result of these different level splittings, correla-
tions lead to an intriguing reversal of interorbital charge
transfer: for H1 with ∆ = −133 meV, the large ag/e′g

splitting is enhanced and gives rise to a gradual filling
of the ag band with increasing U . Since, at small U , the
ag occupancy is lower than the e′g occupancy, this charge
transfer amounts to an initial reduction of orbital polar-
ization. (At larger U , nag might become larger than ne′

g
, so

that the same correlation induced e′g → ag charge trans-
fer eventually could turn into enhanced orbital polariza-
tion.) In contrast, the small crystal field included in H2,
∆ = −10 meV, is too weak to enforce a correlation in-
duced downward shift of the ag band. Thus, the charge
transfer is dominated by the larger e′g occupancy, giving
enhanced orbital polarization even at small U .

According to the above discussion several argu-
ments reveal that the tight-binding fit obtained from
Hamiltonian H1(k) is more appropriate than the one de-
rived from H2(k): (i) the important crystal field parameter
is included in the fit, rather than chosen independently;
(ii) H1(k) reproduces the crossing of the low-lying bands
along MK whereas H2(k) does not, giving rise to a spu-
rious upward shift of ag spectral weight and, because of
charge conservation, a downward shift of the e′g bands;
(iii) the better fit derived from H2(k) at the top of the
ag band is artificial because the LDA bands include inter-
planar interaction that the tight-binding model does not;
reproduction of features that stem from this interaction is
actually undesirable.

Thus, since H1(k) provides the more accurate fit to the
LAPW bands, the correlation induced reduction of orbital
polarization in the range of reasonable values of U and J
should be more realistic than the opposite trend obtained
for H2(k). As argued in references [9,16], therefore, local
Coulomb correlations should slightly enhance the e′g hole
pockets of Na0.3CoO2.

The important point which we like to emphasize, how-
ever, is that, even if H2(k) is used as input in the many-
body DMFT calculation, the reversal of charge transfer
relative to the one found for H1(k) is not large enough to
push the e′g bands fully below EF .

This is illustrated in Figure 4 which shows the dis-
persion of the quasi-particle bands for Hamiltonian H2 at
U = 4.0 eV, J = 0.7 eV. This band structure was gen-
erated by transforming the subband self-energies Σi(iωn)
derived within ED/DMFT to real frequencies by using the
procedure discussed in reference [16]. The e′g Fermi sur-
face pockets are associated with the flat bands extending
slightly above EF along ΓK. The occupied part of the
bands is about 0.7 eV wide, in qualitative agreement with
the photoemission data. For larger U the e′g hole pockets
become smaller and might even disappear, but the overall
width of the t2g bands then also decreases and becomes
smaller than observed experimentally.

According to Figure 3, the correlation induced interor-
bital charge transfer in the case of H2 is more sensitive to
the choice of the Hund’s exchange J than in the case of
H1, in particular, for J = 0. This surprising qualitative
difference between the two tight-binding Hamiltonians is
currently under investigation and will be addressed in fu-
ture work.
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Fig. 4. (Color online) Broadened (red) distributions: disper-
sion of quasi-particle bands of Na0.3CoO2 calculated within
ED/DMFT for Hamiltonian H2(k) (reference [12]) at T =
20 meV, U = 4.0 eV, J = 0.7 eV. Solid (black) curves: corre-
sponding LDA bands.

3 Discussion

As pointed out above, the ag band crosses the upper
branch of the e′g approximately half-way between Γ and
K. Away from this symmetry direction, both bands may
interact so that a hybridization gap opens up. Moreover,
the e′g band rapidly disperses downwards away from the
ΓK direction and shifts below EF . Because of the finite
aperture of the electron detector in angle resolved photoe-
mission, the data necessarily integrate over a small win-
dow in k‖. Since the ΓK line represents only a single point
within this window, the main part of detected emission
spectrum must therefore exhibit a gapped dispersion be-
low the maximum of the e′g band, i.e., close to or below
EF .

We also note that, because of the orbital character of
these bands (the ag orbital points away from the plane of
Co atoms, while the e′g orbitals lie mainly within the Co
plane) the emission from the ag band tends to be much
stronger than from the e′g bands [23]. A clear distinction
between these bands is therefore nontrivial. It would there-
fore be valuable to perform ARPES measurements for s-
polarized and p-polarized light in order to exploit elemen-
tary selection rules to distinguish bands whose wavefunc-
tions are odd or even with respect to reflections about the
plane defined by a specific k‖ (determined by the detector
azimuthal orientation) and the surface normal. Such mea-
surements were in fact carried out by Qian et al. [3] and are
in good correspondence with the expected odd/even band
character along ΓM . Surprisingly, however, along ΓK s-
polarization was found to yield nearly the same band dis-
persion as p-polarization despite the different symmetry
properties of the t2g bands (see Figs. 4c and 4d of Ref. [3]).
Also, according to the uncorrelated and correlated band
structures shown in Figures 1 and 4, at K the ag band
must lie far below the degenerate e′g bands, which is not
evident from the ARPES data [2,3].

As discussed in reference [17], for J = 0 a positive
crystal field ∆ ≈ 50 . . . 100 meV enhances the orbital po-
larization, so that, in combination with local Coulomb in-
teractions, the e′g hole pockets disappear. Since for realis-
tic exchange energies J = 0.7 . . .0.9 eV the overall effect
of Coulomb correlations is weaker, ∆ should be accord-
ingly larger [20]. If we assume the ARPES data to be
correct, the crucial question then concerns the physical
origin of such a crystal field. Evidently, it is not related
to on-site Coulomb interactions in the spirit of a single-
site DMFT. Non-local effects stemming from the momen-
tum dependence of the self-energy have not yet been ex-
plored and could be studied by using a cluster extension
of the DMFT. Na disorder was shown to eliminate the
pockets at large Na concentrations near x = 0.7 [21,22],
but is believed to be too weak to have a significant effect
on the Fermi surface near x = 0.3. Surface effects which
have played an important role in ARPES data on other
perovskites, such as Ca2−xSrxRuO4 and Ca1−xSrxVO3,
should also be investigated, in particular, the effect of Na
induced states on the first layer. Moreover, possible struc-
tural distortions, such as intra-planar buckling, and their
connection to the opening of the ag/e′g hybridization gap
along ΓK should be explored.

We finally mention that, as emphasized in ref-
erence [17], the e′g hole pockets are also impor-
tant for the understanding of the heat capacity of
Na0.3CoO2. At present, the experimental value, γ ≈
12 . . .16 mJ/molCoK2, is difficult to reconcile with the
LDA result, ∼14 mJ/molCoK2, and an effective mass en-
hancement of about 2, as derived within DMFT. For a
detailed analysis of this quantity it might be necessary
to relax the pinning condition for the total density of
states implied by the single-site approximation and allow
for non-local effects.

4 Conclusion

In summary, we have presented a detailed discussion of
single-particle and many-body correlation effects that in-
fluence the inter-orbital charge transfer among t2g con-
duction bands and the shape of the Fermi surface of
Na0.3CoO2. The results reveal that slight differences
among the tight-binding Hamiltonians lead to increasing
or decreasing orbital polarization. This reversal of sub-
band occupancies as a function of U underlines the im-
portance of using a high-quality single-particle basis as
input in the many-body calculation. On the other hand,
by comparing results obtained from ED and QMC impu-
rity treatments for identical input Hamiltonians, we have
found excellent agreement, confirming the reliability of
these complementary DMFT approaches. These calcula-
tions resolve the puzzling apparent discrepancies between
DMFT results reported in references [9,16] and [17] for the
correlation induced ag/e′g charge transfer in Na0.3CoO2.

In spite of the opposite trends found for two differ-
ent tight-binding Hamiltonians, in the range of realistic
Coulomb and exchange energies, the differences concern-
ing the subband occupations are not large enough to fill
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the e′g hole pockets. The main result of this work is there-
fore that, unless additional structural modifications en-
hance the intrinsic t2g crystal field and shift the e′g bands
below EF , the topology of the Fermi surface of Na0.3CoO2

remains the same as predicted by LDA band theory.
We hope that these results encourage further experi-

mental and theoretical work to study in more detail the ge-
ometrical and electronic structure of this fascinating ma-
terial.

One of us (A.L.) likes to thank Chris Marianetti for extensive
correspondence and for sending his QMC self-energy results,
and Michelle Johannes and Igor Mazin for very useful discus-
sions. We are grateful to the authors of reference [19] for the
permission to quote the matrix elements of Hamiltonian H1(k).

Appendix

In this Appendix we specify the matrix elements of
Hamiltonion H1(k). The tight-binding parameters were
derived using a Wannier representation of full-potential
NMTO calculations using the technique described in ref-
erence [24]. The obtained parameters were subsequently
adjusted to reproduce the full-potential LAPW bandstruc-
ture throughout the Brillouin Zone using a least squares fit
routine. Further details will be provided in reference [19].
This tight-binding Hamiltonian is precisely the same as
that used in reference [17], though the parameter set is
different and therefore yields slighty different band dis-
persions as shown in Figure 1.

For convenience, we use a cubic coordinate system in
which the unit vectors along the x, y, z axes define the
hexagonal plane of Co sites. We specify H1(k) in terms of
t2g = dxy,xz,yz orbitals in this coordinate system and later
transform local quantities such as the density of states to
the ag, e′g basis via the transformation ag = (xy + xz +
yz)/

√
3, e′g1 = (xz − yz)/

√
2, e′g2 = (2xy − xz − yz)/

√
6.

Let us define a = (1,−1, 0)/
√

2 and b = (1, 1,−2)/
√

6.
The lines ΓM and ΓK in the two-dimensional hexagonal
Brillouin zone are then given by k = 0 . . .b/2 and k =
0 . . . (b + a/

√
3)/2, respectively.

We introduce the cosine functions of the first three
neighbor shells as

cos1 = cos(k′
x − k′

y)

cos2 = cos(k′
z − k′

y)

cos3 = cos(k′
z − k′

x)
cos4 = cos(k′

x − 2k′
y + k′

z)

cos5 = cos(k′
x − 2k′

z + k′
y)

cos6 = cos(k′
y − 2k′

x + k′
z)

cos7 = cos(2k′
x − 2k′

y)

cos8 = cos(2k′
z − 2k′

y)

cos9 = cos(2k′
z − 2k′

x)

with k′
i = 2πki

√
2/3.

The first-neighbor contributions to H1(k) are given by:

a(1, 1) = a1cos1 + a2(cos2 + cos3)
a(2, 2) = a1cos2 + a2(cos1 + cos3)
a(3, 3) = a1cos3 + a2(cos1 + cos2)
a(1, 2) = a3cos3

a(1, 3) = a3cos2

a(2, 3) = a3cos1

where

a1 = 1.5t1σ + 0.5t1δ

a2 = t1π + t1δ

a3 = t1δ − t1π.

The second-neighbor contributions are:

b(1, 1) = b1(cos4 + cos6) + b2cos5

b(2, 2) = b1(cos4 + cos5) + b2cos6

b(3, 3) = b1(cos5 + cos6) + b2cos4

b(1, 2) = b4(cos5 + cos6) + b3cos4

b(1, 3) = b4(cos4 + cos5) + b3cos6

b(2, 3) = b4(cos4 + cos6) + b3cos5

where

b1 = (6t2σ + 7t2π + 5t2δ)/9
b2 = (3t2σ + 8t2π + 25t2δ)/18
b3 = (6t2σ − 5t2π − t2δ)/9
b4 = (−3t2σ − 2t2π + 5t2δ)/9.

The third-neighbor contributions are:

c(1, 1) = c1cos7 + c2(cos8 + cos9)
c(2, 2) = c1cos8 + c2(cos7 + cos9)
c(3, 3) = c1cos9 + c2(cos7 + cos8)
c(1, 2) = c3cos9

c(1, 3) = c3cos8

c(2, 3) = c3cos7

where

c1 = 1.5t3σ + 0.5t3δ

c2 = t3π + t3δ

c3 = t3δ − t3π.

The above matrix elements correspond to a perfect octa-
hedral symmetry. In the real lattice, however, the oxygen
octahedra are slightly compressed along the z-axis of the
hexagonal crystal. As a result of this non-cubic distortion
the t2g orbitals hybridize along directions that would nor-
mally be forbidden. To account for these interactions addi-
tional matrix elements are allowed. The complete Hamil-
tonian matrix is then given by

H(i, j) = ε0δij + a(i, j) + b(i, j) + c(i, j) + f0

+ f1(cos1 + cos2 + cos3)
+ f2(cos4 + cos5 + cos6)
+ f3(cos7 + cos8 + cos9)
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where the coefficients fi account for non-cubic dis-
tortions. The detailed derivation of this Hamiltonian
matrix will be given elsewhere [19]. The values of the
hopping parameters tiα (i = 1 . . . 3, α = σ, π, δ) and of
the coefficients fi (i = 0 . . . 3) which are derived from a
fit to the LAPW band structure, are as follows (all in eV):

t1σ = 0.0432, t1π = −0.1380, t1δ = 0.0202,

t2σ = −0.1228, t2π = 0.0094, t2δ = 0.0570,

t3σ = −0.1322, t3π = −0.0489, t3δ = −0.0347,

f1 = 0.1054, f2 = −0.0292, f3 = 0.0322.

The constant off-diagonal element f0 responsible for the
t2g crystal field splitting ∆ = 3f0 between ag and e′g bands
is f0 = −0.04424 eV. Finally, the mean energy level ε0 =
−0.4893 eV is adjusted so that up to the Fermi energy
EF = 0 there are 5.3 electrons within the t2g bands. From
the above definitions it follows that the centroid of the ag

band is given by Eag = ε0 + 3f0 = −0.622 eV, while the
e′g centroid coincides with ε0.
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